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Chapter 1: Overview

Methods for improving the time-efficiency of NMR data acquisition have been popular since
the early days of multidimensional NMR [1]. Such methods have focussed around recording a
subset of the full data matrix (non-uniform sampling, NUS) and coupled with a variety of
processing methods due to the restriction of the Fourier transform to using regularly sampled
data [1–7]. NUS approaches are typically used to improve resolution, sensitivity or reduce the
recording time for spectra, or a combination of all three [4, 8]. Compressed sensing (CS) was
pioneered in the field of information theory [9–11] and quickly found applications in a number
of fields including MRI [12] and more recently NMR as a new method for processing NUS
data [13–16]. CS has been demonstrated to be a powerful method to reconstruct undersampled
spectra with high fidelity, even for weak peaks in spectra with a high dynamic range [16].
Consequently CS has rapidly gained popularity in NMR spectroscopy. The aim of this software
is to provide a simple means of processing NUS data with a variety of available CS algorithms.

2



Chapter 2: Installation

The software comes as a single .tar.gz package. In order to simplify installation the package
includes miniconda3 containing python3 and relevant libraries. This will hopefully avoid prob-
lems with different python/python package versions. Miniconda is subject to the Anaconda
End User Licence Agreement see (https://docs.continuum.io/anaconda/eula). The pack-
age also contains Azara (see http://www2.ccpn.ac.uk/azara/) which is used to provide
postprocessing commands.

The current version has been tested on 64 bit Linux distributions. A separate download is
available for 64 bit Mac OS X 10.11 and later. To install:

1. Uncompress and extract the download.

tar zxvf cambridgecs.tar.gz

2. The uncompressed folder CambridgeCS contains the following folders: azara-2.8, bin,
binBuild, miniconda3, testData. Change into the binBuild directory and run the com-
mand:

bash buildCython

This will produce .so files for all the .c files in binBuild.

3. The code is called using the scripts in the bin directory. These should be added to the
system path e.g. to your .bashrc file. cambridgecs calls the reconstruction code, whilst
graphPlot calls the simple spectrum viewer independently.
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Chapter 3: Quick Start

This section is designed to give a very brief overview of running the code in simple cases,
with a particular view to running the example scripts contained in the folder testData and to
adapting these to other similar situations. Detailed information on running ‘Cambridge CS’
and the various commands therein is given in chapter ??.

CambridgeCS can be called using the following command:

cambridgecs [OPTION] [Script file]

-a --aut

Run in automatic mode. Does not launch GUI and requirements for user input are

suppressed. Requires a script file.

-h --help

Show help text

-g --gui

Launch the GUI. The GUI maybe launched without a script file in which case a script

can be built within the GUI. Alternatively an existing script file maybe loaded

into the GUI and amended or run.

To load one of the test scripts (e.g. 550 cs.scr), change to the relevant directory and run the
command:

cambridgecs -g 550_cs.scr

The example chosen is for a 3D H-detected HNCO experiment. The GUI will load the
commands contained in the script file. Basic information about the dataset is shown in the
‘Data parameters’ section. Below this is the ‘Pre-processing script’ which carries out processing
of the direct dimension. Additional commands can be added using the green crosses. Red
crosses remove commands. The data reconstruction is carried out using the ‘Reconstruction
script’ section. Here the choice of reconstruction algorithm can be made along with phasing
and weighting functions for the indirect dimensions. Finally post processing is specified in the
‘Post-processing script’. Typically this involves additional commands e.g. reversing dimensions
or adding additional baseline corrections. As with the direct dimension, processing commands
can be added and removed using the green and red crosses. Since post-processing uses Azara
(packaged with the code), the dimensions are specified using script com n for the nth dimension.

In the ‘Data Parameters’ and ‘Reconstruction Script’ sections of the code the dropdown ‘Extra
Params’ menus contain additional, but non-essential commands which may be used or needed
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in certain situations.

The script can be viewed with the button ‘Open script editor’. This loads the ‘Script editor’
window where the script can also be edited and synced with the GUI. It is hoped that this
will help users to become familiar with the scripting style. The script can be saved with the
button ‘Save file’ although the script will also be automatically saved once the code is run.

To run the code, press the button ‘Process current script’. A terminal window will appear to
show the progress of the reconstruction. At the end of the reconstruction the simple viewer
will open automatically (assuming post processing commands are set). This allows quick
visual inspection of the reconstruction. Changes can be made in the GUI or the ‘Script editor’
and the code re-run as necessary. Each run opens a new simple viewer window. GUI windows
can be closed with the keys ‘q’ or ‘Esc’.

The testData folder contains other examples of 2, 3 and 4D data sets all of which can be
reconstructed using CambridgeCS (see section B for details).

Whilst the main use of Cambridge CS is for CS processing of NUS data, it is also possible to
process fully-sampled data. This can be done in two ways - either by treating the data as if it is
an NUS experiment by providing a suitable points list (nuslist). This is essential if the data is
recorded in NUS order i.e. quadrature detection is performed before dimension incrementation.
If the experiment is recorded as a standard fully-sampled experiment the ‘Uniform sampling
flag’ can be set in ‘Data Parameters’. It is then necessary to specify ‘max points’ for each
indirect dimension under the ‘Reconstruction script’ so that the code knows how to correctly
reshape the data. An example of this is given in the script 102 ft full.scr.
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Chapter 4: Using Cambridge CS

4.1 Concept

Data processing may be carried out using either a script-based approach, or using the GUI.
We recommend that initially the GUI is used in order to become familiar with the scripting
approach. The button ‘Open Raw Script’ opens a text window which will be populated with
commands as these are selected in the GUI. Commands may also be typed in the scripting
window and synced with the GUI via the ‘Sync text’ button. The scripts and GUI have four
sections:

Data parameters
Pre-processing script
Reconstruction script
Post-processing script

‘Data parameters’ contains information about the data i.e. file size, location, data type
etc. Data parameters must be set for all processing scripts. More details are given in the
section 4.2.

‘Pre-processing’ parameters contains the commands needed for processing the direct
(acquisition) dimension of multidimensional experiments. It is assumed that this dimension is
always fully-sampled. More details on the pre-processing functions are given in section 4.3.
This section is optional if pre-processing is carried out in another software package. Explicit
support is available for data pre-processed via the NMRPipe suite (section 4.2.2).

Reconstruction parameters contains the options for NUS data reconstruction of the indirect
dimensions either via the FFT, or using a variety of compressed sensing algorithms. The output
from this may either be reconstructed time-domain data, or reconstructed frequency-domain
data.

‘Post-processing’; this section is optional. If post-processing commands are set in the script,
processing will be carried out using the Azara software package (W. Boucher, unpublished).
Both time-domain or frequency-domain output from the reconstruction may be processed.
Alternatively other processing packages may be used. Further details on Azara post-processing
are given in section 4.5. Note that the post-processing section must be set for the simple
viewer to open automatically.

4.2 Loading data

4.2.1 Data Parameters

Various options and flags are available to specify data import parameters. These are detailed
below. Essential options are visible in the GUI. Extra options may be selected from the
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dropdown menus.

Directory
directory </Path/To/Directory>

Specify the file path to the directory containing the input data. Output data will be
written to this directory. See also Raw data directory below

Data Input
dataInput </Path/To/Data>

Specify the file path to the input data if this is not the raw ser or fid file (Bruker and
Varian respectively).

Raw data directory
rawDirectory <Directory>

Raw data may be stored in a subdirectory within Directory. If Raw data directory is
specified, the software will look for raw data in </Path/To/Directory/rawDirectory>. Output
data will still be saved in </Path/To/Directory>.

NUS list
nusList <name>

Specify the name of the list file containing the acquired points in the indirect dimension(s).
This may be specified in terms of increments (i.e. starting at 0) or in terms of points (i.e.
starting at 1). The file format may be a column vector, where a single point/increment
is specified by ndim lines where ndim is the number of dimensions, or as a matrix of the
size [npts indirect, ndim] where npts indirect is the total number of points in the indirect
dimensions. The software detects the format automatically. The NUS list is assumed to be in
the experiment directory (either Directory, or Raw data directory). The default is vclist
(Bruker convention)

Original NUS list
nusListOriginal <name>

Used in combination with <nusList> to artificially further undersample an experiment.
<nusListOriginal> specifies the nusList which describes the recorded data. <nusList> is
then used to specify a second list which which specifies a new undersampled schedule. For
example, if a fully-sampled experiment is recorded and the user wishes to test the effect of 10%
sampling, <nusList> would be set to a 10% sampling list while <nusListOriginal> would be a
fully-sampled list. The data is then read-in using <nusListOriginal> and masked according to
<nusList>. The output of the reconstruction will be equivalent to the 10% sampled spectrum.
If the original experiment is already undersampled, care must be taken to avoid specifying
points that are not present in <nusListOriginal>.

Data type
int, float

Used to specify the data type of raw data: either 32-bit integer or 32-bit float. Note
that this option is only available for raw (unprocessed data) which is being processed using
the pre-processing commands. If data is pre-processed in other software, it is assumed the
data-type is 32-bit float.

Endian
big endian, little endian
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Used to specify the endianess of raw data. Note this option is only available for raw
(unprocessed data) which is being processed using the pre-processing commands. If data is
pre-processed in other software, it is assumed that the data-type is 32-bit float.

Data input flag
nmrPipe, varian

Used to specify alternative data input formats (NMRPipe or Varian).

Shuffle
shuffle21, shuffle32, shuffle5724

Shuffles the input data ordering by switching the locations of real (r) and imaginary (i)
points in the indirect dimensions as shown below:

Dimension Default order Shuffled order

2D r 1 i 2
i 2 r 1

3D rr 1 rr 1
ir 2 ri 3
ri 3 ir 2
ii 4 ii 4

4D rrr 1 rrr 1
irr 2 rri 5
rir 3 rir 3
iir 4 rii 7
rri 5 irr 2
iri 6 iri 6
rii 7 iir 4
iii 8 iii 8

Threads
threads <number>

Specify the number of cpu threads used to reconstruct the data. The default is 1. If set to
0, the maximum number of available cores will be used.

4.2.1.1 Data size

All data is imported as a pseudo-2D.

Direct-dim
npts npts <points>

The total number of points in the direct dimension (real and imaginary).

block block <block size>
The block size for the direct dimension. This option can be found in the drop-down menu

‘Extra Params’.

Indirect-dims
npts npts <points>

The total number of points in all the indirect dimension (real and imaginary) i.e. product
of the indirect dimension sizes.
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ndim ndim <number>
The total number of indirect dimensions, i.e. n− 1 for an n-dimensional experiment.

block block <block size>
The block size for the indirect dimensions. This option can be found in the drop-down

menu ‘Extra Params’.

interlace interlace <dimension>
Used to convert P and N type data e.g. from Echo-Antiecho/Rance-Kay data acquisition

to cosine/sine type data needed for processing to generate an absoprtion mode lineshape.
Note interlacing is only used if a pre-processing script is included. Dimension assumes that
n = 1 is the direct (acquisition dimension).

acquired points acquired points <number>
Used in cases where the acquisition was not completed to specify the number of data

points (real and imaginary) which were recorded in the indirect dimensions as opposed to the
total size of the indirect dimensions which should still be specified.

4.2.1.2 RQD-params

More information forthcoming

4.2.2 NMRPipe

Cambridge CS may be be used in conjunction with NMRPipe processing. A typical scenario
would be to use NMRPipe for pre- and post-processing with CS reconstruction carried out in
the indirect dimensions using the algorithms available in Cambridge CS. In this case the CS
processing script should not contain the sections

# Pre-processing parameters:

# Azara post-processing parameters

Cambridge CS is able to extract parameter information from NMRPipe binary files, and write
out to NMRPipe format for further processing/viewing in the NMRPipe software suite. One
significant difference between NMRPipe and Cambridge CS is that Cambridge CS uses the
Azara convention of specifying dimensions in numerical order and processing in situ, rather
than the NMRPipe convention of transposing the required dimension to the direct dimension
for processing. Thus a typical NMRPipe pre-processing script should not include the final
transpose statement.

|nmrPipe -fn TP \

A sample NMRPipe pre-processing script for a 2D TROSY is shown below:

Conversion from Bruker format to pipe format:
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<fid.com>

#!/bin/csh -f

#

bruk2pipe -in ./ser -bad 0.0 -DMX -noswap \

-decim 2000 -dspfvs 20 -grpdly 67.9862518310547 \

-xN 2048 -yN 300 \

-xT 1024 -yT 250 \

-xMODE Complex -yMODE Echo-AntiEcho \

-xSW 10000 -ySW 1700.680 \

-xOBS 800.130 -yOBS 81.076 \

-xCAR 4.708 -yCAR 115.100 \

-xLAB 1H -yLAB 15N \

-ndim 2 -aq2D States \

-out data.fid -ov -verb

Processing of the direction dimension, keeping the data in the form xy:

<ft1.com>

nmrPipe -in data.fid \

| nmrPipe -fn POLY -time \

| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 1.0 \

| nmrPipe -fn ZF -size 4096 \

| nmrPipe -fn FT \

| nmrPipe -fn PS -p0 -173 -p1 180 -di \

| nmrPipe -fn POLY -auto -xn 5.0ppm -ord 1 \

| nmrPipe -fn EXT -xn 5.7ppm -x1 10.95 -sw -verb \

-verb -ov -out test.nus

Subsequent CS processing requires specification of a header flag <input flag> with the value
‘nmrPipe’, as well as the size of the NMRPipe header <head> (the default value is 512 which
should work). Other parameters are specified as normal. An example script is shown below:

# General properties:

directory /home/user/path/to/pipe/input/file

dataInput /home/user/path/to/pipe/input/file/test.nus

rawDirectory Bruker_directory_number

outputFile pipe_output

experimentNumber 1

nmrPipe

head 512

direct-dim:

npts 1714

end_script

indirect-dims:

npts 300
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ndim 1

end_script

# Reconstruction parameters:

reconstruction_script:

reconstruction_flag IHT

stop_flag l2

dim 2:

zerofill 2

phase -90.0 -360.0

sinebell 60.0

end_script

end_script

After processing in the indirect dimensions, a small NMRPipe script <$outputFile.com> is
written automatically to convert the data back to a format which can be read by NMRPipe,
using the NMRPipe programme bin2pipe as shown below.

#!/bin/csh

#

bin2pipe \

-in /home/user/path/to/pipe/input/file/pipe_output_recon.spc \

-bad 0.0 -noswap \

-xN 1714 \

-xT 1714 \

-xFT Freq \

-xMODE Real \

-xSW 4184.570312 \

-xORIG 4560.469238 \

-xOBS 800.130005 \

-xLAB 1H \

-yN 2048 \

-yT 2048 \

-yFT Freq \

-yMODE Real \

-ySW 1700.680054 \

-yORIG 8492.844727 \

-yOBS 81.075996 \

-yLAB 1H \

-ndim 2 \

|nmrPipe -fn TP -auto \

|nmrPipe -fn REV \

|nmrPipe -fn TP -auto \

-out /home/user/path/to/pipe/input/file/pipe_output.pipe.ft2

-ov -verb

The various parameters shown in this script are extracted from the header file of the input
NMRPipe file automatically. Further examples of using CambridgeCS in combination with
NMRPipe are given in Appendix B
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4.3 Pre-processing (direct dimension processing)

Pre-processing of NUS data involves processing the directly acquired dimension which is
fully-sampled. This may be done using the software of choice of the user e.g. Bruker
Topspin or NMRPipe. Loading such data is described in section 4.2. Within the CS-
NMR software, we provide direct-dimension processing modelled on the Azara software
but coded in Python (W. Boucher, unpublished). Common processing functions, described
below, are available and operate in the same way as described in the Azara help pages
(<http://www2.ccpn.ac.uk/azara/azara_docs/process.html>), which may be useful for
further information. The direct dimension processing commands should be contained between
the flag-lines pre processing script: and end script. An example pre-processing script
is provided below:

pre_processing_script:

complex

brukerGroupPhase

sinebell 60

gaussian_sw 16.4 1.1 10000

zerofill 2

fft

phase 7 -72

real

range 1400 2048

end_script

The output from the pre-processing script is used directly for further processing, but the
data processed in dimension 1 is also written out directly as * prepro f1.spc along with
* prepro f1.spc.par, a parameter file containing information on the dimension and block sizes in
the Azara format, which may be of use for further processing in other software packages or to
analyse the direct dimension further e.g. using the Azara plot2 software. Only information on
the number of points and block sizes are correct in the parameter file. Values for spectral width
(sw), spectral frequency (sf), reference point (refpt), reference ppm (refppm) and nucleus
(nuc) are arbitrary and would need to be edited by the user if correct referencing is needed.
Most likely these files will not be used by the average user.

Processing commands available are listed below with a brief describtion of their usage
and syntax, taken from the Azara manuel. For more information, see the Azara help section
<http://www2.ccpn.ac.uk/azara/azara_docs/process.html>. In the GUI, commands
may be selected by clicking on the green cross and selecting the relevant command. Any
necessary parameters should be typed in the text boxes. Commands may be removed by
clikcing the red cross

complex
complex

Specify data is complex.

real
real

Specify data is real.
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conjugate
conjugate

Take the complex conjugate of data. Data must be complex, i.e. the complex flag (above)
must previously have been set.

brukerGroupPhase
brukerGroupPhase <GRPDLY>

This does the first order phase correction required for Bruker AV data where <GRPDLY>
is given in the Bruker acqus file. The phase correction is 360×<GRPDLY>. For Bruker
Avance data the parameters DSPFVS and DECIM, given in the Bruker acqus file can be
converted to a lookup value using the lookup table (see ?? and converted to <GRPDLY>
using the formula groupDelay=0.5×lookup/DECIM).

If no argument is specified GRPDLY will be read directly from the acqus file assuming
this is in the experiment directory.

The brukerGroupPhase command applies the following functions:

fftn

phase 0 <360.0*GRPDLY>

ifftn

where fftn and ifftn are the normalised Fourier and inverse Fourier transforms respectively,
phase is as specified below, and upper cuts the upper point of the data to the initial number
of points (npts1) minus the group delay value, with int($GRPDLY) retaining the integer part
of group delay.

conv sine
conv sine <half width>

This convolves the data with a sine function with the given <half width>, and subtracts
the result from the data. Typically this is done on the acquisition fid before anything else is
done, in order to remove a water signal that occurs at zero frequency. A typical value with
1024 data points would be conv sine 8.

decay sw
decay sw <line broadening> <spectral width>

This multiplies the data by a decaying exponential exp(−πLBt) where LB is the line-
broadening (Hz).

sinebell
sinebell <angle>

This multiplies the data by a sine function with the given <angle> (specified in degrees)
at point 1, and, if there are n (complex/real) points, with angle 180 degrees at point n+1
(*not* point n).

sinebell2
sinebell2 <angle>

This multiplies the data by a sine function squared with the given <angle> (specified in
degrees) at point 1, and, if there are n (complex/real) points, with angle 180 degrees at point
n+1 (*not* point n).
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gaussian sw
gaussian sw <line broadening (Hz)> <sharpening factor> <spectral width (Hz)>

This multiplies the data by the gaussian exp(a + bt + ct2). If LB is the entered line
broadening (in Hz) and s is the sharpening factor, then a = − ln 2/s2, b = π × LB and
c = −(π × LB × s)2/4 ln 2. Note that LB must be positive for normal use, which is the
opposite of the Bruker convention. The function converts a Lorentzian line (or multiplet)
of width FWWH equal to LB to a Gaussian line of width FWWH equal to s × LB. The
maximum value of the multiplying function is 1, which is obtained at the fraction of the
acquired time t/T = 2 ln 2/(LB × π × T × s2). The spectral width (SW) is needed by the
program in order to translate between point number, x, and the time value, t, used in the
function, by t = x/(2× SW ). If a value of SW = 0.0 is given, the program uses the value for
SW which was entered in the par file (or the default). The suggested range of values for s are
from 1.3 to 0.7 (possibly 0.5).

zerofill
zerofill <n>

This zerofills the data so that its final size is 2n times the original size. For data that is
not already of size 2n, the data is first zero padded to the nearest 2n before further zero filling.

fft
fft

This does a complex Fourier transform.

phase
phase <phase0> <phase1> <pivot, default=1>

This phases (complex) data with specified parameters <phase0> and <phase1> (both
specified in degrees) and <pivot> which assumed by default to be the first point, point 1.
The data must be complex.

reduce
reduce

This converts complex data to real data by discarding the imaginary part.

upper
upper <upper bound>

This truncates the data so that the last point is now at <upper bound>. The first point
is point 1.

lower
lower <lower bound>

This shifts data so that the origin is now at <lower bound>. The first point is point 1.

range
range <lower bound> <upper bound>

This shifts and truncates data so that the origin is now at <lower bound> and so that
the last point is <upper bound>. The first point is point 1.
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4.4 Indirect dimension reconstruction

‘Reconstruction script’ contains the commands for processing the indirect dimensions of NUS
acquired data. ‘Reconstruction type‘ provides options for using various different algorithms as
well as the FFT for processing the indirect dimensions. ‘Extra Params‘ relevant to the different
algorithms are accessed using the dropdown menu. Parameters specific to the different indirect
dimensions should be set. The number of available dimensions is governed by the ‘ndim’
parameter in the ‘Data parameters’ section.

Reconstruction type
General options

resume
Resumes reconstruction from saved data. The code will attempt to load previous files

using default names; if the expected files are not found, the reconstruction will restart afresh.
Can be used, for example if max iter was not set high-enough and further iterations are
needed to improve the reconstruction quality.

saveCompleteData
Saves reconstructed time domain data for subsequent use in post-processing software. Use

with the post-processing flag ‘Input Data useTimeData’ (see section 4.5).

record l2

Write out values of the l2 norm for the reconstruction. The output file is * l2.out.

record noise

Write out values of the noise for the reconstruction. The output file is * noise.out.

Algorithm specific options
The options below are used by some or all of the algorithms. Details are given here. The

options available for each algorithm are given in the algorithms section.

max iter
noise
l2 stop
threshold
global threshold
k

stop flag

FT
No additional options

IHT
max iter <default=1000>
noise <noise-level, default=0>
l2 stop <default=0>
threshold <default=0.75>
global threshold <default=0.01>
stop flag <None/l2/noise>
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IST
max iter <default=1000>
noise <noise-level, default=0>
l2 stop <default=0>
threshold <default=0.75>
global threshold <default=0.01>
stop flag <None/l2/noise>

IRLS1
max iter <1000>
noise <noise-level>
l2 stop <default=0>
k <default=0.015>
stop flag <None/l2/noise>

Dimension commands
scaleT0
scaleT0 <scaling factor>

Scales the first point of the relevant indirect dimension by <scaling factor>. Used to
correct the first point of certain experiments. Assumes the data is complex.

conjugate
conjugate

Take the complex conjugate of data. Data is assumed to be complex.

exchange
exchange

Exchange the real and imaginary parts of complex data.

mask
mask ppmm

Apply ppmm mask (++–) to the relevant indirect dimension i.e. the sign of points 3 and
4 and every third and fourth point equivalently is changed. Needed for some Bruker data.

mask pm
Apply pm mask (+-) i.e. the sign of every other point is changed. Equivalent to the

conjugate command.

extend
extend <no. of complex points>

Extend data by specified number of complex points.

decay
decay <end value>

Multiplies the data by a decaying exponential which is 1 at point 1 and <end value> at
point n.

sinebell
sinebell <angle>

This multiplies the data by a sine function with the given <angle> (specified in degrees)
at point 1, and, for n complex points, with angle 180 degrees at point n+1 (*not* point n).
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sinebell2
sinebell2 <angle>

This multiplies the data by a sine function squared with the given <angle> (specified in
degrees) at point 1, and, if there are n (complex/real) points, with angle 180 degrees at point
n+1 (*not* point n).

gaussian sw
gaussian sw <line broadening (Hz)> <sharpening factor> <spectral width (Hz)>

This multiplies the data by the gaussian exp(a + bt + ct2). If LB is the entered line
broadening (in Hz) and s is the sharpening factor, then a = − ln 2/s2, b = π × LB and
c = −(π × LB × s)2/4 ln 2. Note that LB must be positive for normal use, which is the
opposite of the Bruker convention. The function converts a Lorentzian line (or multiplet)
of width FWWH equal to LB to a Gaussian line of width FWWH equal to s × LB. The
maximum value of the multiplying function is 1, which is obtained at the fraction of the
acquired time t/T = 2 ln 2/(LB × π × T × s2). The spectral width (SW) is needed by the
program in order to translate between point number, x, and the time value, t, used in the
function, by t = x/(2× SW ). If a value of SW = 0.0 is given, the program uses the value for
SW which was entered in the par file (or the default). The suggested range of values for s are
from 1.3 to 0.7 (possibly 0.5).

4.5 Post-processing

Post-processing is available using the Azara processing package. Data input may be time-
domain data or frequency domain data from the output of the reconstruction script. This is
specified via the flag ‘Input Data’, using the options useTimeData and useFTData, respectively.
A selection of commonly-used Azara commands can be specified from within the CS-processing
script between the flag-lines post-processing script: and end script. Within this, dimen-
sions can be specified using the Azara nomenclature script com <dimension>, end script.
An example post-processing script is given below:

# Azara post-processing script:

post_processing_script:

useFTData

script_com 2

base_poly 6 0

end_script

script_com 3

base_poly 4 0

end_script

script_com 1

base_poly2 8 1 1 400

end_script

end_script
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The CS-script uses the commands listed under post processing script: to write an Azara
script file * azara.scr, which is then run using the Azara programme (W. Boucher, unpublished;
http://www2.ccpn.ac.uk/azara/). This has the advantage that the commands can be re-run
or modified at any time by changing the Azara script and calling with process * azara.scr.
The following functions are available from CS-processing using either the GUI or the script-
based approach, grouped by category as found in the GUI. A brief description of their usage
and syntax is given below, taken from the Azara manual. For more information, see the Azara
help section <http://www2.ccpn.ac.uk/azara/azara_docs/process.html>.

Real/complex

complex
complex

Specify data is complex.

real
real

Specify data is real.

reduce
reduce

Reduce complex data to real data by throwing away the imaginary part.

Data manipulation

exchange
exchange

Swap the real and imaginary parts of complex data.

conjugate
conjugate

Take the complex conjugate of complex data.

shift
shift <shift amount>

This shifts the data by the positive amount <shift amount>.

reverse
reverse

This reverses the data.

set
set <first point> <last point> <value>

Sets each point between <first point> and <last point> (inclusive) to <value>. Applies
only to real data. For complex data use set2.

set2
set2 <first point> <last point> <real value> <imaginary value>

Sets each point between <first point> and <last point> (inclusive) to <real value>
+i*<imaginary value>. Applies only to complex data. For real data use set.
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scale
scale <first point> <last point> <value>

Multiply data by <value> from <first point> to <last point> (inclusive). The data must
be real. For complex data, use scale2, below.

scale2
scale2 <first point> <last point> <real value> <imaginary value>

Multiply complex data by <real value> + i*<imaginary value> between <first point> to
<last point> (inclusive).

mask ppmm
mask ppmm

Apply ppmm mask (++–) i.e. the sign of points 3 and 4 and every third and fourth point
equivalently is changed. Needed for some Bruker data.

mirror zero
mirror zero

Mirrors the data for zero dwell time by taking the complex conjugate and reversing the
data, excluding the first point. Requires complex data.

mirror half
mirror half

Mirrors the data for zero dwell time by taking the complex conjugate and reversing the
data, including the first point. Requires complex data.

cycle
cycle <cycle amount>

This cycles the data by <cycle amount>. If the data is complex, <cycle amount> should
be specified in terms of complex points.

Data range

lower
lower <lower bound>

This shifts data so that the origin is now at <lower bound>. The first point is point 1.

upper
upper <upper bound>

This truncates data so that its last point is <upper bound>. The first point is point 1.

range
range <lower bound> <upper bound>

This shifts and truncates data so that the origin is now at <lower bound> and so that
the last point is <upper bound>. The first point is point 1.

fft

zerofill
zerofill <n>

Data is padded with zeros giving a final size of 2n times the original size where n ≤ 4
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fft
fft

Complex Fourier transform. The data must be complex. If the input data is not a power
of two, it is zero-padded to the nearest power of two.

ifft
ifft

Inverse complex Fourier transform. The data must be complex. If the input data is not a
power of two, it is zero-padded to the nearest power of two.

hft
hft

Hilbert Fourier transform. The data must be real. If the input data is not a power of two,
it is zero-padded to the nearest power of two.

fftn
fftn

Normalised complex Fourier transform. The data must be complex. If the input data is
not a power of two, it is zero-padded to the nearest power of two.

ifftn
ifftn

Normalised complex inverse Fourier transform. The data must be complex. If the input
data is not a power of two, it is zero-padded to the nearest power of two.

Apodisation

decay
decay <end value>

Multiplies the data by a decaying exponential which is 1 at point 1 and <end value> at
point n.

decay sw
decay sw <line broadening (Hz)> <spectral width (Hz)>

Multiplies the data by a decaying exponential, exp(−π ∗ LB ∗ t), where LB is <line
broadening (Hz)>. Spectral width is used to convert between points, x, and time values, t,
using the function t = x

(2∗SW ) .

sinebell
sinebell <angle>

This multiplies the data by a sine function with the given <angle> (specified in degrees)
at point 1, and, if there are n (complex/real) points, with angle 180 degrees at point n+1
(*not* point n).

sinebell2
sinebell2 <angle>

This multiplies the data by a sine function squared with the given <angle> (specified in
degrees) at point 1, and, if there are n (complex/real) points, with angle 180 degrees at point
n+1 (*not* point n).
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gaussian sw
gaussian sw <line broadening (Hz)> <sharpening factor> <spectral width (Hz)>

This multiplies the data by the gaussian exp(a + bt + ct2). If LB is the entered line
broadening (in Hz) and s is the sharpening factor, then a = − ln 2/s2, b = π × LB and
c = −(π × LB × s)2/4 ln 2. Note that LB must be positive for normal use, which is the
opposite of the Bruker convention. The function converts a Lorentzian line (or multiplet)
of width FWWH equal to LB to a Gaussian line of width FWWH equal to s × LB. The
maximum value of the multiplying function is 1, which is obtained at the fraction of the
acquired time t/T = 2 ln 2/(LB × π × T × s2). The spectral width (SW) is needed by the
program in order to translate between point number, x, and the time value, t, used in the
function, by t = x/(2× SW ). If a value of SW = 0.0 is given, the program uses the value for
SW which was entered in the par file (or the default). The suggested range of values for s are
from 1.3 to 0.7 (possibly 0.5).

Phase

phase phase <phase0> <phase1>
Phase complex data using the zero order correction, <phase0>, and first order correction,

<phase1> (both specified in degrees), with the pivot at point 1, where point 1 is the first
point in Azara nomenclature.

phase2
phase2 <phase0> <phase1> <pivot>

Phase complex data using the zero order correction, <phase0>, and first order correction,
<phase1> (both specified in degrees), with pivot at point <pivot>, where the first point is
point 1.

Baseline correction

base const
base const <half width>

This fits the baseline of a spectrum (not fid) by first finding baseline points using a shifting
window of half width <half width> and then fitting a constant to those baseline points.

base const2
base const2 <half width> <first point> <last point>

This fits the baseline of a spectrum (not fid) by first finding baseline points using a shifting
window of size <half width> and then fitting a constant to those baseline points.
Only the points from <first point> to <last point> (inclusive) are fitted.

base poly
base poly <half width> <degree>

This fits the baseline of a spectrum (not fid) by first finding baseline points using a shifting
window of size <half width> and then fitting a polynomial of degree (order) <degree> to
those baseline points.

base poly2
base poly2 <half width> <degree> <first point> <last point>

This fits the baseline of a spectrum (not fid) by first finding baseline points using a shifting
window of size <half width> and then fitting a polynomial of degree (order) <degree> to
those baseline points. Only the points from <first point> to <last point> (inclusive) are
fitted.
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base trig
base trig <half width> <order>

This fits the baseline of a spectrum (not fid) by first finding baseline points using a shifting
window of size <half width> and then fitting trig functions of order <order> to those baseline
points. In fact, the number of functions used to do the fitting is 2*<order> + 1, the 2 being
because cosines and sines are used, and the 1 being because a constant is also used. This fit
only makes sense if the original data set contains the entire recorded spectral width.

base trig2
base trig2 <half width> <order> <first point> <last point>

This fits the baseline of a spectrum (not fid) by first finding baseline points using a shifting
window of size <half width> and then fitting trig functions of order <order> to those baseline
points. In fact, the number of functions used to do the fitting is 2*<order> + 1, the 2 being
because cosines and sines are used, and the 1 being because a constant is also used. Only the
points from <first point> to <last point> (inclusive) are fitted. This fit only makes sense if
the original data set contains the entire recorded spectral width.

base points
base points <base points file>

This uses the points in the <base points file> to define the baseline points for subsequent
baseline correction routines (by default the baseline is determined automatically by the
program). There must be a matching end base points before the next use of base points or
before a resumption of the automatic baseline determination.

end base points
end base points

This matches the most recent base points and must occur before the next use of base points
or before a resumption of automatic baseline determination (the default).

base subtract
base subtract <base subtract file>

This subtracts the values given in <base subtract file> from the data. If there are n points
then there must be n values in <base subtract file> (in free format).

base subtract2
base subtract2 <base subtract file> <first point> <last point>

This subtracts the values given in <base subtract file> from the data, from <first point>
to <last point> (inclusive). If n = <last point> - <first point> + 1, then there must be n
values in <base subtract file> (in free format).

Linear prediction

lp extend
lp extend <number predicted> <length of sequence> <cutoff>

When <number predicted> is positive, this uses linear prediction to extend the existing
data from the end by <number predicted>.

When <number predicted> is negative, this does a linear prediction by <|number
predicted|> points inserted at the beginning of the existing data.

Data is assumed to be complex with <number predicted> and <length of sequence>
specified in complex points. <cutoff> takes values between 0 and 1; singular values below
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cutoff are set to 0. Recommended values for <length of sequence> are min(n4 to n
3 , 15 to 20)

where n is the number of complex points prior to linear prediction. The recommended value
for <cutoff> is 0.0001. For more details see <http://www2.ccpn.ac.uk/azara/azara_docs/
process.html> and Zhu and Bax, 1992, J. Magn. Reson. 100, 202-207.

lp forward
lp forward <number predicted> <number of poles>

Predicts <number predicted> points from the end of the existing data. For complex data,
specify in terms of complex points. Real and imaginary points are fitted separately. <number
of poles> is an upper bound for the number of oscillators in a given row. A typical value is 5
or 10.

lp backward
lp forward <number predicted> <number of poles>

Predicts the first <number predicted> points, overwriting the existing first <number
predicted> points. For complex data, specify in terms of complex points. Real and imaginary
points are fitted separately. <number of poles> is an upper bound for the number of oscillators
in a given row. A typical value is 5 or 10.

lp first
lp first <number predicted> <length of sequence> <number of sequences> <cutoff>

Linear prediction of the first <number predicted> points, using <number of sequences>
sequences of length <length of sequence>, by overwriting the first <number predicted> points.
Specify in terms of complex points. Real and imaginary points are fitted separately. <number
of sequences> must be ≥ <length of sequence>. Singular value decomposition is used and
<cutoff> (between 0 and 1) determines which singular values are significant.

lp first2
lp first2 <number predicted> <length of sequence> <number of sequences> <cutoff>

Linear prediction of the first <number predicted> points, using <number of sequences>
sequences of length <length of sequence>, by overwriting the first <number predicted> points.
Specify in terms of complex points. For complex data, real and imaginary points are fitted as
one complex point. <number of sequences> must be ≥ <length of sequence>. Singular value
decomposition is used and <cutoff> (between 0 and 1) determines which singular values are
significant.

lp last
lp last <number predicted> <length of sequence> <number of sequences> <cutoff>

Linear prediction of the last <number predicted> points, using <number of sequences>
sequences of length <length of sequence>, by extending the existing data. Specify in terms of
complex points. Real and imaginary points are fitted separately. <number of sequences> must
be ≥ <length of sequence>. Singular value decomposition is used and <cutoff> (between 0
and 1) determines which singular values are significant.

lp last2
lp last2 <number predicted> <length of sequence> <number of sequences> <cutoff>

Linear prediction of the last <number predicted> points, using <number of sequences>
sequences of length <length of sequence>, by extending the existing data. Specify in terms of
complex points. For complex data, real and imaginary points are fitted as one complex point.
<number of sequences> must be ≥ <length of sequence>. Singular value decomposition is
used and <cutoff> (between 0 and 1) determines which singular values are significant.
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Chapter 5: Spectrum viewer

A simple spectrum viewer is included with the software to aid visualisation of processed data.
The spectrum viewer can be opened in two ways. If the code is run directly from the GUI,
the spectrum viewer will open automatically once the reconstruction is completed (assuming
post-processing is selected). Alternatively, the viewer can be launched stand-alone using the
script graphPlot in the bin directory.

The spectrum viewer reads Azara-style .spc.par files (see below) and can display 2, 3 and
4D datasets.

ndim 2

file 102_ft_full_postpro_block.spc

dim 1

npts 262

block 64

sw 1000.000

sf 500.000

refppm 0.0000

refpt 1.0000

nuc 1H

dim 2

npts 256

block 64

sw 1000.000

sf 500.000

refppm 0.0000

refpt 1.0000

nuc 1H

In each dimension the ‘dim’, ‘npts’ and ‘block’ options are essential. Other parameters
contain default values which may be read by Azara plot2. The spectrum viewer is designed for
simple visual analysis of the processed spectrum; currently shift referencing is not supported.
An example window for a 2D HSQC spectrum is shown in Figure 5.1

1D traces are shown in blue, positive contours in black and negative contours in red.
The base level and number of displayed contour levels can be set using the ‘Base level’ and
’Number of levels’ options at the top of the window. In each case a scale factor can be set. For
the contour levels, this is multiplicative and determines the change between each contour level
for the given number of levels. For the base level, this is also multiplicative and determines
how much the base level changes on increasing or decreasing. Some useful commands are
given below:
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Figure 5.1: 2D spectrum display window.

Command Function

↑ / ↓ Increase/decrease the base level by the scale factor
f / d Scale up/down the 1D traces

shift + left mouse drag Zoom into the selected region
ctrl + left mouse drag Zoom into the selected region

Double-click (left-mouse buttom) Zoom out to the full spectrum size
q quit viewer

Esc quit viewer

Table 5.1: Commands for use with the spectrum viewer
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Figure 5.2: 3D spectrum display window. ‘All’ (right-hand side) is selected to stack all the
planes in dimension 3 (indicated by ‘Stack dims:’ on the top toolbar).

For n-dimensional spectrum with n > 2, two dimensions are displayed and the remaining
dimensions are ‘stacked’. The choice of stacked dimension can be changed using the ’Stack
dims’ dropdown menu. By default all the planes from the stacked dimension are shown as
indicted by the ‘all’ checkbox on the right hand side. If this is unticked, the slider can then
be used to scroll through the stacked dimension(s). The slice selected is shown at the top
of the spectrum display window. An example of a 3D display window with all planes in
dimension 3 stacked is shown in Figure ??. An example with a single plane displayed is shown
in Figure ??.
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Figure 5.3: 3D spectrum display window for a single plane in the first indirect dimension
(dimension 2, plane 37). ‘All’ (right-hand side) is now unticked and the slider used to scroll to
the desired slice.
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Appendix A: Lookup table for Bruker Avance
data

Lookup values are given in the main body of the table for a particular (DSPFVS, DECIM)
coordinate. Using the lookup value from the table below, groupDelay=0.5×lookup/DECIM.
The first order phase correction applied is 360×<GRPDLY>. For more details see the
brukerGroupPhase command in section 4.3.

DSPFVS 10 11 12 13 20
DECIM

2 179 184 184 11 -1
3 201 219 219 17 -1
4 533 384 384 23 -1
6 709 602 602 35 -1
8 1097 852 852 47 -1
12 1449 1668 1668 71 -1
16 2225 2312 2292 95 -1
24 2929 3368 3368 143 -1
32 4481 4656 4616 191 -1
48 5889 6768 6768 287 -1
64 8993 9344 9264 383 -1
96 11809 13568 13568 575 -1
128 18017 18560 18560 -1 -1
192 23649 27392 27392 -1 -1
256 36065 36992 36992 -1 -1
384 47329 55040 55040 -1 -1
512 72161 73856 73856 -1 -1
768 94689 110336 110336 -1 -1
1024 144353 147584 147584 -1 -1
1536 189409 220928 220928 -1 -1
2048 288737 295040 295040 -1 -1
2080 -1 -1 -1 -1 282814

29



Appendix B: Test Data

Test data are contained in the directory testData, with processing scripts included to illustrate
processing methods.

B.0.1 2D, 15N HSQC, ubiquitin

This data set was recorded on a Bruker DRX500 spectrometer. Change into the sub-directory
2D. The raw data is contained in the folder 102 in this directory. There are two scripts set-up;
102 ft full.scr and 102 cs nus.scr. 102 ft full.scr is used to demonstrate FT processing of
a fully-sampled data set. To load the processing script into the GUI for the fully-sampled
HSQC, run the command

cambridgecs -g 102_ft_full.scr

Looking at the GUI display, note that the Directory set, ..../2D, is the directory where
output files will be stored. Change this on the computer being used by clicking Select and
choosing the relevant directory. Since the raw data is in the directory 102, the Raw data
directory parameter is set. This option is available in the Extra Parameters drop down menu.
An alternative approach would be to set the top level Directory to .../2D/102. In this case
the processed data will be stored in the same directory as the raw data. Since the data is
fully-sampled, the Uniform sampling flag is set, also available from Extra Params.

The pre-processing script contains commands for FT processing of the direct dimension.
Since the data was recorded on a Bruker DRX machine, the parameters DECIM and DSPFVS
(found in the Bruker acqus file) should be converted to a group delay value and used with the
command brukerGroupPhase. Here DECIM = 16 and DSPFVS = 12 and the lookup value
(see A) is 2292. This gives brukerGroupPhase = 0.5× 2292/16 = 71.625.

‘Reconstruction script’ contains commands for processing the indirect dimensions. Here
FT is selected from the dropdown menu since the data is fully-sampled and the data can be
processed with the fast Fourier transform. In addition, the flag max points must be set (here
256, the total number of points in the indirect dimension), since there is no NUS list for a
fully-sampled data set to specify the matrix size.

Post-processing commands are used to add additional baseline corrections using Azara.
The input data may be specified here as the FT data i.e. the frequency domain output from
the reconstruction.

The button, ‘Open script editor’ shows the text version of the script, which can be easily
adapted to other spectra.

The reconstruction is run by clicking the button Process current script. A terminal
window displays the progress of the reconstruction with information about the reconstruction
parameters and output files. The progress bar on the GUI tracks the progress of the
reconstruction (note this does not include the Azara post processing). If Azara post-processing
is set, the output spectrum will be displayed in the simple viewer.
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The script 102 cs nus.scr demonstrates artificial undersampling of a fully-sampled data
set, which may be used in test cases to determine how a particular spectrum responds to
different sampling schedules and undersampling factors. The reconstruction is setup largely
as above. However, the Uniform sampling flag and max points are no longer set. Instead two
NUS lists are provided; vclist full and vclist. vclist full is the Original NUS list which specifies
the positions of points in the recorded data. vclist is the NUS list used for undersampling, in
this case ∼30% sampling following an decaying exponential schedule. The reconstruction is
carried out with the IHT algorithm, using the default parameters.

B.0.1.1 NMRPipe

In the folder 2D there is a subfolder, NMRPipe, containing NMRPipe processing scripts.
The data is prepared using the script fid.com which was prepared using the assistance of the
‘Bruker’ macro:

#!/bin/csh

bruk2pipe -in ../102/ser \

-bad 0.0 -noaswap -DMX -decim 16 -dspfvs 12 -grpdly 0 \

-xN 1024 -yN 256 \

-xT 512 -yT 128 \

-xMODE DQD -yMODE States-TPPI \

-xSW 10000.000 -ySW 2000.000 \

-xOBS 500.01 -yOBS 50.665588 \

-xCAR 4.679 -yCAR 120 \

-xLAB HN -yLAB 15N \

-ndim 2 -aq2D States \

-out ./test.fid -verb -ov

Direct dimension processing is carried out using the script nusproc.com. Importantly,
CambridgeCS follows the Azara convention of processing in place along each axis, so there is
no need for a transpose statement at the end of the 1D script.

#!/bin/csh

nmrPipe -in ./test.fid \

| nmrPipe -fn SOL \

| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 0.5 \

| nmrPipe -fn ZF -auto \

| nmrPipe -fn FT \

| nmrPipe -fn PS -p0 237 -p1 33 -di \

| nmrPipe -fn EXT -x1 220 -xn 480 -sw -verb \

-ov -out test.nus

The output from the NMRPipe 1D processing is read into CambridgeCS for reconstruction
of the indirect dimensions. In this case, there is no need to setup ‘Pre-processing parameters’
(pre-processing has been carried out here using NMRPipe). Reconstruction of the indirect
dimension is carried out using the commands in the ‘Reconstruction parameters’ section.
Following this, post-processing may be carried out either by selecting Azara post processing
commands or using NMRPipe. Here we use NMRPipe:
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# General properties:

directory /home/path/to/CambridgeCS/testData/2D/NMRPipe

outputFile 102_pipe_cs_2

dataInput /home/path/to/CambridgeCS/

testData/2D/NMRPipe/test.nus

rawDirectory ../102

nmrPipe

uniform_sampling

head 512

direct-dim:

npts 261

end_script

indirect-dims:

npts 256

ndim 1

end_script

# Pre-processing parameters:

# Reconstruction parameters:

reconstruction_script:

reconstruction_flag FT

dim 2:

zerofill 1

phase 180.0 -360.0

mask_ppmm

max_points 256

sinebell 90.0

end_script

end_script

# Azara post processing instructions:

In this example ‘uniform sampling’ is selected as the data is fully-sampled. In addition
the ‘nmrPipe’ flag is set along with the header flag ‘head 512’ since all NMRPipe files have a
header of length 512 bytes. After reconstruction the processed data will be displayed in the
graph viewer window, although note that this does not include any post-processing commands.
In addition, a small output script is created and run which converts the data back to NMRPipe
format 102 pipe cs 2.com:

#!/bin/csh

#

bin2pipe -in /home/path/to/CambridgeCS/testData/

2D/NMRPipe/102_pipe_cs_2_recon.spc -bad 0.0 -noswap \

-xN 261 \

-xT 261 \
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-xFT Freq \

-xMODE Real \

-xSW 2548.828125 \

-xORIG 2661.812500 \

-xOBS 500.010010 \

-xLAB HN \

-yN 512 \

-yT 512 \

-yFT Freq \

-yMODE Real \

-ySW 2000.000000 \

-yORIG 5095.495605 \

-yOBS 50.665588 \

-yLAB 15N \

-ndim 2 \

-out /home/path/to/CambridgeCS/testData/2D/NMRPipe/102_pipe_cs_2.pipe.ft2 -ov

The final NMRPipe output file is ‘102 pipe cs 2.pipe.ft2’. Further post-processing com-
mands may be added to this or other NMRPipe scripts as needed. Note that if Azara
post-processing is selection, the conversion to a NMRPipe output file is also carried out.
However, the spectrum displayed in the graph viewer will be the result of the Azara post-
processing.

B.0.2 3D 13C NOESY, sensory rhodopsin II (pSRII)

This data set was recorded on a Bruker AV800 spectrometer equipped with a cryoprobe.
As for the 2D data set discussed above Directory refers to the output directory where the
processed data will be saved, whilst Raw data directory refers to the directory containing the
raw data. The data here is undersampled, using a 25% exponentially decaying NUS schedule.
The parameter nuslist points to the file vclist. The file will be looked for in the Raw data
directory and this specifies the list of acquired points in the form, where x and y correspond
to coordinates for the two indirect dimensions:

x1

y1

x2

y2

x3

y3

...

xn

yn

The nuslist option can be found under Extra params. This also contains the option Threads.
This dictates how many CPU threads to use. The default is set to 1. If this value is set to 0,
the maximum available will be used. Reconstructions of multidimensional data sets can be
speeded up considerably by increasing the number of threads.

Since the data is recorded on and Bruker AV instrument, the GRPDLY parameter in the
acqus file is used to correct for the first order phase error. This is done automatically with
the brukerGroupPhase command set to -1.
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As the data is undersampled, reconstruction is carried out using one of the compressed
sensing algorithms; here iterative hard thresholding (IHT) is used. The stop flag is set to
l2 ; the algorithm compares the l2 norm between successive iterations and will stop when
there is no significant change in this value. The IHT may be run with default settings.
In this case, the threshold has been increased to 85% of the maximum peak height (0.85).
Processing parameters for the two indirect dimensions are set under dim 2 and dim 3 and a
post-processing script with baseline corrections is also included.

B.0.2.1 NMRPipe

As previously, NMRPipe processing scripts are contained in the subdirectory ‘NMRPipe’. For
a 3D experiment, each indirect dimension coordinate has four FIDs representing the different
quadrature detection components. Thus the y-dimensions has size 4 and the z axis has size
determined by the number of coordinates in the vclist. The direct dimension processed data
is written out as individual 2D planes, which could be used for phasing using for example
NMRDraw.

#!/bin/csh

bruk2pipe -in ../1734/ser \

-bad 0.0 -aswap -DMX -decim 2000 -dspfvs 20 -grpdly 67.9862518310547 \

-xN 1024 -yN 4 -zN 480 \

-xT 512 -yT 2 -zT 240 \

-xMODE DQD -yMODE Complex -zMODE Complex \

-xSW 10000.000 -ySW 2000.000 -zSW 3263.708 \

-xOBS 800.134 -yOBS 800.134 -zOBS 201.197 \

-xCAR 4.773 -yCAR 4.773 -zCAR 22.038 \

-xLAB 1Hx -yLAB 1H -zLAB 13C \

-ndim 3 -aq2D States \

| pipe2xyz -x -out ./fid.nus/test%03d.fid -verb -ov -to 0

Further processing is carried out using the script csnusproc.com. Once again, no transpose
command is required at the end of the 1D processing script:

#!/bin/csh

xyz2pipe -in fid.nus/test%03d.fid -x \

| nmrPipe -fn SOL \

| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 \

| nmrPipe -fn ZF -auto \

| nmrPipe -fn FT -verb \

| nmrPipe -fn PS -p0 282 -p1 0 -di \

| nmrPipe -fn EXT -left -sw \

-ov -out testcs.nus -x

Indirect dimension processing is carried out using CambridgeCS with the script 1734 pipe cs.scr.
Again the nmrPipe and head flags are set:
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# General properties:

directory /home/path/to/CambridgeCS/testData/

3D/13CNOESY/NMRPipe

outputFile 1734_pipe_cs

dataInput /home/path/to/CambridgeCS/testData/

3D/13CNOESY/NMRPipe/testcs.nus

rawDirectory ../1734

nusList vclist

nmrPipe

head 512

direct-dim:

npts 512

end_script

indirect-dims:

npts 1920

ndim 2

end_script

# Pre-processing parameters:

# Reconstruction parameters:

reconstruction_script:

reconstruction_flag IHT

stop_flag l2

dim 2:

zerofill 2

phase 45.0 0

mask_ppmm

sinebell 60.0

end_script

dim 3:

zerofill 1

phase 0 0

sinebell 60.0

end_script

end_script

# Azara post processing instructions:

The NMRPipe script 1734 pipe cs.com converts the data back to NMRPipe format.

B.0.3 3D SOFAST (Best) [15N,1H] TROSY HNCO

The data was recorded on a Bruker DRX500 spectrometer. The reconstruction is set up
similar to the 13C NOESY described above. In this case, 22.7% sampling is used with an
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exponentially decaying distribution in the decaying 13C dimension (dim 3). The 15N dimension
is recorded with P/N selection; P/N data is handled in the processing by selecting the interlace
option from the ‘indirect-dims’, ‘Extra params’ drop down menu. Interlace is set to 2 to
convert dim 2 P/N points to cos/sin points. As for the 2D HSQC discussed above, the first
order phase correction is determine from the DECIM and DSPFVS parameters in the acqus
file. Here DECIM = 16 and DSPFVS = 12 and the lookup value (see A) is 2292. This gives
brukerGroupPhase = 0.5× 2292/16 = 71.625.

The reconstruction is carried out using the IHT algorithm. Global threshold is selected
from the Extra Params dropdown menu and set to 1 × 10−4. This lowers the minimum
threshold for the reconstruction, which may increase the accuracy of the reconstruction, but
also increases the reconstruction time and may lead to reconstruction of noise components.

B.0.3.1 NMRPipe

NMRPipe processing proceeds as described above for the 3D NOESY. However, dimension 2
(the first indirect dimension (15N)) is acquired as echo-antiecho data (P-/N-type). In order to
avoid the phase-twist line-shape, this data must be converted to cosine-/sine-type data. This
is achieved using the Rance-Kay macro provided with NMRPipe which is called using the
following command:

| nmrPipe -fn MAC -macro $NMRTXT/ranceY.M -noRd -noWr \

ranceY.m is used since dimension 2 (y-dimension) needs converting. The full script
(fid.com) is:

#!/bin/csh

bruk2pipe -in ../550/ser \

-bad 0.0 -noaswap -DMX -decim 16 -dspfvs 12 -grpdly -1 \

-xN 1024 -yN 4 -zN 350 \

-xT 512 -yT 2 -zT 175 \

-xMODE DQD -yMODE Real -zMODE Real \

-xSW 10000.000 -ySW 2530.364 -zSW 1666.667 \

-xOBS 500.132 -yOBS 50.678 -zOBS 125.757 \

-xCAR 4.7 -yCAR 120.000 -zCAR 176.000 \

-xLAB 1Hx -yLAB 15N -zLAB 13C \

-ndim 3 -aq2D States \

| nmrPipe -fn MAC -macro $NMRTXT/ranceY.M -noRd -noWr \

| pipe2xyz -x -out ./fid/test%03d.fid -verb -ov -to 0

Other processing scripts are as previously described, however note that since the Echo-
Antiecho data is handled by NMRPipe the interlace command should not be set in Cam-
bridgeCS.

B.0.4 4D, HCCH NOESY, pSRII

The data was recorded on a Bruker AV800 spectrometer, equipped with cryoprobe. The recon-
struction is set up as in previous examples, with the GRPDLY value set to brukerGroupPhase =
0.5× 2292/16 = 71.625.

Reconstruction of a 4D using 12 threads takes around 5 h. For a quick view of the
spectrum, it is recommended to change the reconstruction type to FT. This will allow a

36



quick overview to check phasing and general spectral appearance before a longer run. It is
advised to run longer reconstructions in automatic mode. No user prompts are required and
the process can be disconnected from the terminal and run in the backgroup. An example
command is given below:

nohup nice -n 10 cambridgecs -a 1664_cs.scr &

nohup disconnects the process from the terminal (‘no hangup’ command will be sent if the
terminal is closed). nice -n 10 sets the ‘niceness’ for the process. Desktop processes receive
priority with a value of 0. cambridgecs -a runs the process in automatic mode (-a) from the
command line.
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Appendix C: Citation and License

Please cite the following paper when presenting results processed using this software:

Mark J. Bostock, Daniel J. Holland and Daniel Nietlispach (2012), Compressed sensing
reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins.
J. Biomol NMR, 54:15-32.

CambridgeCS (c) by Mark J. Bostock, Robert Tovey and Daniel Nietlispach, Department of
Biochemistry, University of Cambridge, UK.

License:

By using CambridgeCS software, the following requirements and conditions are implicitly
accepted by the user:

1. The person acquiring or using this software is authorized by his Workplace and Organisa-
tion to commit to this agreement, which is binding on this person, this person’s Workplace,
Organisation, and all other persons and institutions with whom this software is shared.

2. This agreement covers all CambridgeCS software in any form, but does not apply to
software that is explicitly distributed under a different license provided that the alternative
license is clearly reflected in the individual files that it covers.

3. CambridgeCS software is provided free of charge to academic users. A fee is applicable for
commercial use.

4. CambridgeCS software, once acquired, may be shared with others working in the same
Workplace as the original acquirer. The software must be accompanied by this license.

5. Except as stated in 4. CambridgeCS software, whether in whole or in part, modified or
unmodified, may not be redistributed in any way.

6. CambridgeCS software is provided ’as is’ and is without warranties, expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose or a warranty of non-infringement. The authors will not be held liable for
any use you make of the software.

7. Acknowledgment shall be made in all publications resulting from the use of CambridgeCS
software. Please reference:

Mark J. Bostock, Daniel J. Holland and Daniel Nietlispach (2012), Compressed sensing
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reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins.
J. Biomol NMR, 54:15-32.
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